674 research outputs found

    From Verified Models to Verified Code for Safe Medical Devices

    Get PDF
    Medical devices play an essential role in the care of patients around the world, and can have a life-saving effect. An emerging category of autonomous medical devices like implantable pacemakers and implantable cardioverter defibrillators (ICD) diagnose conditions of the patient and autonomously deliver therapies. Without trained professionals in the loop, the software component of autonomous medical devices is responsible for making critical therapeutic decisions, which pose a new set of challenges to guarantee patient safety. As regulation effort to guarantee patient safety, device manufacturers are required to submit evidence for the safety and efficacy of the medical devices before they can be released to the market. Due to the closed-loop interaction between the device and the patient, the safety and efficacy of autonomous medical devices must ultimately be evaluated within their physiological context. Currently the primary closed-loop validation of medical devices is in form of clinical trials, in which the devices are evaluated on real patients. Clinical trials are expensive and expose the patients to risks associated with untested devices. Clinical trials are also conducted after device development, therefore issues found during clinical trials are expensive to fix. There is urgent need for closed-loop validation of autonomous medical devices before the devices are used in clinical trials. In this thesis, I used implantable cardiac devices to demonstrate the applications of model-based approaches during and after device development to provide confidence towards the safety and efficacy of the devices. A heart model structure is developed to mimic the electrical behaviors of the heart in various heart conditions. The heart models created with the model structure are capable of interacting with implantable cardiac devices in closed-loop and can provide physiological interpretations for a large variety of heart conditions. With the heart models, I demonstrated that closed-loop model checking is capable of identifying known and unknown safety violations within the pacemaker design. More importantly, I developed a framework to choose the most appropriate heart models to cover physiological conditions that the pacemaker may encounter, and provide physiological context to counter-examples returned by the model checker. A model translation tool UPP2SF is then developed to translate the pacemaker design in UPPAAL to Stateflow, and automatically generated to C code. The automated and rigorous translation ensures that the properties verified during model checking still hold in the implementation, which justifies the model checking effort. Finally, the devices are evaluated with a virtual patient cohort consists of a large number of heart models before evaluated in clinical trials. These in-silico pre-clinical trials provide useful insights which can be used to increase the success rate of a clinical trial. The work in this dissertation demonstrated the importance and challenges to represent physiological behaviors during closed-loop validation of autonomous medical devices, and demonstrated the capability of model-based approaches to provide safety and efficacy evidence during and after device development

    THE PERFORMANCE OF COMPANIES AND CASH HOLDINGS DURING THE CRISIS – CHINA EVIDENCE

    Get PDF
    The effect of cash holdings on the value of a firm has attracted the attention of researchers as well as shareholders. China has been receiving more influence from the world market since it became a member of World Trade Organization (WTO) on December 11th 2001. Affected by the financial crisis in 2008, the cash holdings tend to play different roles on the valuation of a company. This paper attempts to find out whether cash holdings offer positive effects or not on corporate market valuation based on the Chinese context. We apply a modified Tobin’s Q as a measure of firm value. Furthermore, the influence of cash holdings on Tobin’s Q is analyzed for both pre and post sub-prime crisis period

    Modeling Cardiac Pacemaker Malfunctions With the Virtual Heart Model

    Get PDF
    Implantable cardiac devices such as artificial pacemakers deliver therapies according to the timing information from the heart. Such devices work under the assumptions of perfect sensing, which are: (a) the pacemaker leads remain in place, and (b) the pacing therapy in one chamber (e.g. atrium) is insulated from the other chambers (e.g. ventricles). But there are common cases which violate these assumptions and the mechanisms for imperfect sensing cannot be captured by a simple signal generator. In this paper we use the Penn Virtual Heart Model (VHM) to investigate the spatial and temporal aspects of the electrical conduction system of the heart in a closed-loop with a pacemaker model. We utilize the spatial properties of the heart to model the sensing mechanism, and use clinical cases to show the validity of our sensing model. Such closed-loop evaluation of the pacemaker operation allows for functional testing of pacemaker software, the development of new algorithms for rhythm therapy and also serves as a tool for incoming cardiac electrophysiology fellows

    High-Confidence Medical Device Software Development

    Get PDF
    The design of bug-free and safe medical device software is challenging, especially in complex implantable devices. This is due to the device\u27s closed-loop interaction with the patient\u27s organs, which are stochastic physical environments. The life-critical nature and the lack of existing industry standards to enforce software validation make this an ideal domain for exploring design automation challenges for integrated functional and formal modeling with closed-loop analysis. The primary goal of high-confidence medical device software is to guarantee the device will never drive the patient into an unsafe condition even though we do not have complete understanding of the physiological plant. There are two major differences between modeling physiology and modeling man-made systems: first, physiology is much more complex and less well-understood than man-made systems like cars and airplanes, and spans several scales from the molecular to the entire human body. Secondly, the variability between humans is orders of magnitude larger than that between two cars coming off the assembly line. Using the implantable cardiac pacemaker as an example of closed-loop device, and the heart as the organ to be modeled, we present several of the challenges and early results in model-based device validation. We begin with detailed timed automata model of the pacemaker, based on the specifications and algorithm descriptions from Boston Scientific. For closed-loop evaluation, a real-time Virtual Heart Model (VHM) has been developed to model the electrophysiological operation of the functioning and malfunctioning (i.e., during arrhythmia) hearts. By extracting the timing properties of the heart and pacemaker device, we present a methodology to construct timed-automata models for formal model checking and functional testing of the closed-loop system. The VHM\u27s capability of generating clinically-relevant response has been validated for a variety of common arrhythmias. Based on a set of requirements, we describe a framework of Abstraction Trees that allows for interactive and physiologically relevant closed-loop model checking and testing for basic pacemaker device operations such as maintaining the heart rate, atrial-ventricle synchrony and complex conditions such as avoiding pacemaker-mediated tachycardia. Through automatic model translation of abstract models to simulation-based testing and code generation for platform-level testing, this model-based design approach ensures the closed-loop safety properties are retained through the design toolchain and facilitates the development of verified software from verified models. This system is a step toward a validation and testing approach for medical cyber-physical systems with the patient-in-the-loop

    Plasmons in Two-Dimensional Topological Insulators

    Full text link
    We analyze collective excitations in models of two-dimensional topological insulators using the random phase approximation. In a two-dimensional extension of the Su-Schrieffer-Heeger model, edge plasmonic excitations with induced charge-density distributions localized at the boundaries of the system are found in the topologically non-trivial phase, dispersing similarly as one-dimensional bulk plasmons in the conventional Su-Schrieffer-Heeger chain. For two-dimensional bulk collective modes, we reveal regimes of enhanced inter-band wave function correlations, leading to characteristic hardening and softening of inter- and intra-band bulk plasmonic branches, respectively. In the two-dimensional Haldane Chern insulator model, chiral, uni-directional edge plasmons in nano-ribbon architectures are observed, which can be characterized by an effective Coulomb interaction cross section. Bulk collective excitations in the two-dimensional Haldane model are shown to be originated by single-particle band structure details in different topological phases

    Cyber-Physical Modeling of Implantable Cardiac Medical Devices

    Get PDF
    The design of bug-free and safe medical device software is challenging, especially in complex implantable devices that control and actuate organs in unanticipated contexts. Safety recalls of pacemakers and implantable cardioverter defibrillators between 1990 and 2000 affected over 600,000 devices. Of these, 200,000 or 41%, were due to firmware issues and their effect continues to increase in frequency. There is currently no formal methodology or open experimental platform to test and verify the correct operation of medical device software within the closed-loop context of the patient. To this effect, a real-time Virtual Heart Model (VHM) has been developed to model the electrophysiological operation of the functioning and malfunctioning (i.e., during arrhythmia) heart. By extracting the timing properties of the heart and pacemaker device, we present a methodology to construct a timed-automata model for functional and formal testing and verification of the closed-loop system. The VHM\u27s capability of generating clinically-relevant response has been validated for a variety of common arrhythmias. Based on a set of requirements, we describe a closed-loop testing environment that allows for interactive and physiologically relevant model-based test generation for basic pacemaker device operations such as maintaining the heart rate, atrial-ventricle synchrony and complex conditions such as pacemaker-mediated tachycardia. This system is a step toward a testing and verification approach for medical cyber-physical systems with the patient-in-the-loop

    Control of Plasmons in Doped Topological Insulators via Basis Atoms

    Full text link
    Collective excitations in topologically non-trivial systems have attracted considerable attention in recent years. Here we study plasmons in the Su-Schrieffer-Heeger model whose low-energy electronic band is only partially filled, such that the system is metallic. Using the random phase approximation, we calculate the intra- and inter-band polarization functions and determine the bulk plasmonic dispersion from the dielectric function within the random phase approximation. We find that the sub-lattice basis states strongly affect the polarization functions and therefore control the system's plasmonic excitations. By varying the real-space separation of these local orbitals, one can thus selectively enhance or suppress the plasmonic energies via a tunable trade-off between intra-band and inter-band screening processes. Specifically, this mechanism can be used to stabilize undamped high energy plasmons that have already been reported in related models. We propose scenarios on how to control and observe these effects in experiments

    Model-Based Closed-Loop Testing of Implantable Pacemakers

    Get PDF
    The increasing complexity of software in implantable medical devices such as cardiac pacemakers and defibrillators accounts for over 40% of device recalls. Testing remains the principal means of verification in the medical device certification regime. Traditional software test generation techniques, where the tests are generated independently of the operational environment, are not effective as the device must be tested within the context of the patient\u27s condition and the current state of the heart. It is necessary for the testing system to observe the system state and conditionally generate the next input to advance the purpose of the test. To this effect, a set of general and patient condition-specific temporal requirements is specified for the closed-loop heart and pacemaker system. Based on these requirements, we describe a closed-loop testing environment between a timed automata-based heart model and a pacemaker. This allows for interactive and physiologically relevant model-based test generation for basic pacemaker device operations such as maintaining the heart rate and atrial-ventricle synchrony. We also demonstrate the flexibility and efficacy of the testing environment for more complex common timing anomalies such as reentry circuits, pacemaker mode switch operation and pacemaker-mediated tachycardia. This system is a step toward a testing approach for medical cyber-physical systems with the patient-in-the-loop
    • …
    corecore